src package
Submodules
src.Imagenet_c_transformations module
- src.Imagenet_c_transformations.brightness(x, i)
- src.Imagenet_c_transformations.contrast(x, i)
- src.Imagenet_c_transformations.defocus_blur(x, i)
- src.Imagenet_c_transformations.disk(radius, alias_blur=0.1, dtype=<class 'numpy.float32'>)
- src.Imagenet_c_transformations.frost(x, i)
- src.Imagenet_c_transformations.gaussian_noise(x, i)
- src.Imagenet_c_transformations.jpeg_compression(x, i) <module 'PIL.Image' from '/Users/caroline/anaconda3/envs/IQA_3.7/lib/python3.7/site-packages/PIL/Image.py'>
- src.Imagenet_c_transformations.save_array(dest, arr)
src.bootstrap module
- class src.bootstrap.Bootstrapper(num_sample_iter: int, sample_size: int, source: Union[str, Path], destination: Union[str, Path], dataset_info: DatasetInfo, transformation_type: str, threshold: float)
Bases:
ABC
- static check_output(self, bootstrap_df: DataFrame)
- run()
- src.bootstrap.bootstrap(images_info_df: DataFrame, num_sample_iter: int, sample_size: int, transformation_type: str, threshold: float, bootstrap_path) DataFrame
Run bootstrap and make the transformation decisions. Input dataset info dataframe should contain the following columns: - id - filename - path - width - height
Output dataframe contains the following columns: - iteration_id - within_iter_id - image_id - transformation_type - transformation_parameter - original_image_path - target_image_path - vd_score
- Parameters
images_info_df (pd.DataFrame) – DataFrame containing image info, contains columns: id, filename, path, width, height
num_sample_iter (int) – number of bootstrap iteration
sample_size (str) – number of images sampled for each bootstrap iteration
transformation_type – transformation type
threshold –
:type threshold float :param matlab_engine :return: bootstrap info dataframe :rtype: pd.DataFrame
- src.bootstrap.bootstrap_transform(original_image: Union[ImageFile, ndarray], transformation: str) Tuple[ndarray, int]
src.constant module
src.dataset module
- class src.dataset.CustomPascalVOCDataset(root: str, orig_root: str, year: str = '2012', image_set: str = 'train', download: bool = False, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, transforms: Optional[Callable] = None)
Bases:
Dataset
- class src.dataset.DatasetInfo
Bases:
ABC
- abstract image_info_df() DataFrame
Should have columns - id - filename - path - width - height
- Raises
NotImplementedError – [description]
- Returns
pandas DataFrame with very basic image info data
- Return type
pd.DataFrame
- class src.dataset.PascalVOCDatasetInfo(root: Path, image_set: str = 'val')
Bases:
DatasetInfo
- image_info_df() DataFrame
- Returns
image info dataframe
- Return type
pd.DataFrame
- verify_root_validity() bool
whether the image_root and annotation_root used to initialize this dataset info object is valid, or compatible image files is what we look at, and annotation files can be a super set of image files :return: is valid
src.utils module
- src.utils.clear_dir(path: Union[str, Path])
- src.utils.get_image_based_on_transformation(transformation: str, image_path: str) Union[ImageFile, ndarray]